Search
Purdue School of Engineering and Technology

Purdue School of Engineering and Technology

Cellular Electrophysiology

BME 59500 / 3 Cr.

This course provides both the theoretical and practical training necessary to understand the operational principles of voltage and current clamp instrumentation most often used in cellular neurophysiology. The application and capabilities of the instrumentation are presented relative to the fundamental principles of bioelectricity most often studied in cellular electrophysiological research including: current, voltage, charge, resistance, capacitance, impedance relative to the phospholipid bilayer and protein pore, elementary properties of ions in solution, the Nernst-Plank equation, subthreshold membrane phenomena, space clamp of membrane potential, electrotonic considerations, conduction of action potentials along axons and spread of membrane potential throughout cell body and dendrites. Additional topics include the origin and analysis of extracellular biopotentials. Course lectures progress from the practical aspects of extracellular recording techniques through to understanding fundamental principles of volume conduction and the effects these have upon the recorded biopotential signals. The course closes with the study of advanced topics of bioelectric phenomena including elementary field theory, the core conductor and lumped fiber source models.