Course name	ECE 30100 Signals and Systems
Credit and contact hours	(3 cr.) Class 3
Course coordinator's name	Qingxue Zhang
Textbook	Roberts, Signals and Systems, Analysis Using Transform Methods and MATLAB, 3 rd Edition. ISBN 9781259989650; or; 9780078028120
	References:
	 Lathi, Linear Systems and Signals, Oxford, Ed. 2, ISBN 0- 190515833-4 A.V.Oppenheim, A. S. Willsky and S. H. Nawab, Signals and Systems, Prentice Hall, NJ, 1996, ISBN 0-13- 814757-4 E. W. Kamen and B. S. Heck, Fundamentals of Signals
	 and Systems Using Matlab, Prentice Hall, NJ, 1997, ISBN 0-02 361942-2 H. P. Hsu, Signals and Systems, McGraw Hill, 1995, ISBN 0-07-030641-9.
Course information	 ECE 30100 Signals and Systems (3 cr.) P: ECE 20200 and MATH 26600. Class 3. Signal and system representation. Fourier series and transforms, sampling and discrete Fourier transforms. Discrete-time systems, difference equation, Z-transforms. State equations, stability, characteristic values and vectors. Continuous-time systems, time and frequency domain analysis. Continuous systems with sampled inputs. Prerequisites/ Co-Requisite P: ECE 202 and Math 266 C: None
	Required, Elective, or Selected Elective: EE Required, CE Required
Goals for the course	A student who successfully fulfills the course requirements will have demonstrated:
	 an ability to classify signals (e.g., periodic, even) and systems (e.g., causal, linear) and an understanding of the difference between discrete and continuous time signals and systems. [1]
	 an ability to determine the impulse response of a differential or difference equation. [1]
	3. an ability to determine the response of linear systems to any input signal by convolution in the time domain. [1,2,6]
	 an ability to understand the definitions and basic properties (e.g., time-shift, modulation, Parseval's Theorem) of Fourier series, Fourier transforms, bilateral Laplace transforms, Z

	 transforms, and the discrete time Fourier transforms, including an ability to compute the transforms and inverse transforms of basic examples using methods such as partial fraction expansions. [1] 5. an ability to determine the response of linear systems to any input signal by transformation to the frequency domain, multiplication, and inverse transformation to the time domain. [1,2,6]
	 an ability to apply the Sampling theorem, reconstruction, aliasing, and Nyquist's theorem to represent continuous-time signals in discrete time so that they can be processed by digital computers. [1,2,6]
List of topics to be covered	 Introduction to Course, Signals (1 class) Signals and Sequences, MATLAB (2 classes) Continuous-Time Systems (2 classes) review convolution. Covered in 202. Laplace Transform (2 classes) review Frequency Response (2 classes) review Fourier Series and Transforms (2 classes) Continuous State-Space Systems (3 classes) Discrete-Time Systems (3 classes) Z-Transform (3 classes) Discrete Frequency Response (1 class) Discrete Fourier Transform (3 classes) Discrete State-Space Systems (3 classes) Exams (2-3 classes)
Syllabi approved by	Qingxue Zhang
Date of approval	11/12/2021