Course name	ECE 52301 Nanosystems Principles
Credit and contact hours	(3 cr.) Class 3
Course coordinator's name	Maher Rizkalla
Textbook	<i>Introduction to Nanoscale Science and Technology</i> , by M. Di Ventra, S. Evoy, J.R. Heflin, Springer, ISBN: 978-1-4020- 77203
Course information	This is the introductory course in the nanosystems area. It introduces students to the principles and applications of nanosystems. The course begins with an introduction to the nanometer scale phenomena. It then introduces students to the basic elements resulting in nanosystems: nanoscale materials, processes, and devices. It also provides students with a basic understanding of the tools and approaches that are used for the measurement and characterization of nanosystems, and their mode ling and simulation. Prerequisites/ Co-Requisite Graduate Standing ; ECE 25500 Required, Elective, or Selected Elective: EE Elective, CE Elective
Goals for the course	 Upon successful completion of the course, students should be able to Explain on the fundamental aspects of the field of nanotechnology, and analyze its wide range of applications and impact on the world economy. [6] Integrate knowledge from interdisciplinary areas of math and science such as biology, chemistry, physics, and engineering into the nanosystems. [1,5] Integrate atomic/molecular scale devices and design into integrated nanosystems related to information technology, energy, and medicine. [2, 1, 6] Assimilate design methodology used in the fabrication, and characterization of nanosystems. [1] Assess nano technology devices and systems and the economic significance of nanosystems including benefits and potential risks. [4] Assess and analyze design methodologies from the literature, and communicate effectively in written and oral presentations in topics related to nanosystems. [3] Solve engineering design issues using nanoscale devices and systems. [2, 5]
List of topics to be covered	 Introduction to Nanoscale Phenomena properties Nanoscale Processes and Fabrication Methods – Top-down Methods, Cross-Cutting Technologies: Resist and Masks

	Photon-Based Nanolithography Techniques, Electron Beam
	Lithography, Focused Ion Beam Lithography, Emerging
	Nanolithographies, Bottom-up Methods, The advantage of
	Self-Assembly, Intermolecular Interactions and Molecular
	Recognition, Self-Assembled Monolayers (SAMs),
	Electrostatic Self-Assembly, Self-Organization in Block
	Copolymers
	3. Nanoscale Materials – Bonding, Dimensionality, Topology,
	Curvature. Kinetics. Energetics and Surfaces of
	Nanoparticles Nanotubes and Nanorods Bionanomaterials
	Advanced Materials Pronerties
	4. Nanoscale Devices and Integrated Nanosystems
	Nanochip(brief history of Microelectronics Devices and
	technology, Basic of Semiconductors, Structure and
	Operation of MOS Transistor, Scaling of Transistor
	Dimensions, Small-Dimension Effects, Nanoscale MOSFET
	Transistor: Extending Classical CMOS Transistors Beyond
	Traditional CMOS and Molecular Electronics: Tools and
	Ways to Build and Probe Molecular Devices Conductance
	Measurements and Integration Strategies) Fuel Cells: Proton
	Exchange Membrane and its Properties Batteries: Materials
	Processes and Daviage Solar Colle: Materials, Processes and
	Devices, Nanoclastromachanical Systems (NEMS) (2
	Devices, Nanoelectromechanical Systems (NEWS) (S
	Dissipation Durant Mathemical Madala Estation, Dynamics,
	Dissipative Process, Mechanical Models, Fabrication and
	Readout, and Performance, and BIOMEMS
	5. Nanosystems Measurement and Characterization – Principles
	and Operation Mechanism of: Scanning Tunneling
	Microscopy, Electron Microscopy (SEM, TEM), and Atomic
	Force Microscopy, X-Ray Nanomaterials Analysis Systems
	(XRD and XPS) Four-Probe Measurements of Thin Films
	(Resistivity and Hall Effect)
	6. Nanosystems Applications – 3 Classes Lab on a Chip: Select
	Examples, Drug Delivery Systems: Select Examples,
	Medicine and Information Technology/Consumer Goods,
	Poster Presentation (1 class)
Syllabi approved by	Maher Rizkalla
Date of approval	04/10/2021